

Coordinate Agents via Policy Optimization

Xihuai Wang (王锡淮) 上海交通大学

https://xihuai18.github.io

Aug. 8 2023 at RLChina

A2PO. ICLR 2023. https://arxiv.org/abs/2302.06205

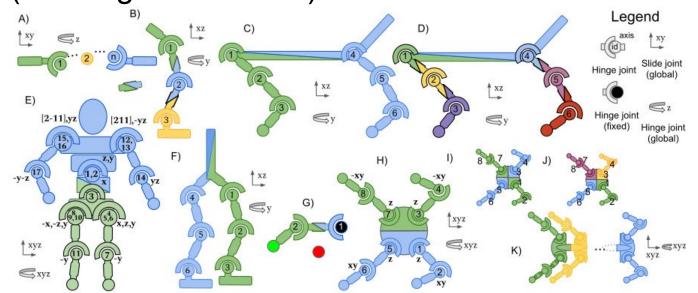
Content

- 1. Brief Introduction about Cooperative MARL and Trust-region Methods Recap
- 2. Extensions of Trust-region Methods in Cooperative MARL
 - MAPPO Reconstructing State Representation
 - CoPPO Coordinating the Joint Policy
- 3. Sequential Policy Optimization From Nonstationarity to Monotonic Improvement
- 4. Agent-by-agent Policy Optimization

Cooperative Multi-agent Scenarios

• SMAC (StarCraft Multi-Agent Challenge)

(a) 2c_vs_64zg
 MAMuJoCo (Multi-agent MuJoCo)



Goal: Learn a policy for each agent that all agents together achieve the goal of the system.

Decentralized Execution

Shared Reward Function

Modelled by a Dec-MDP $(S, \{A^i\}_{i \in \mathcal{N}}, r, \mathcal{T}, \gamma)$

- $\mathcal{N} = \{1, \dots, n\}$ is the set of agents;
- *S* is the state space;
- $\mathcal{A} = \mathcal{A}^1 \times \cdots \times \mathcal{A}^n$ is the joint action space, where \mathcal{A}^i is the action space of agent i;
- $r: S \times A \mapsto \mathbb{R}$ is the reward function;
- $\mathcal{T}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \mapsto [0, 1]$ is the dynamics function;
- $\gamma \in [0,1)$ is the reward discount factor.

Goal: $\max_{\boldsymbol{\pi}} \mathbb{E}_{\tau \sim (\mathcal{T}, \boldsymbol{\pi})} [\sum_{t=0}^{\infty} \gamma^t r(s_t, \boldsymbol{a_t})]$ $\boldsymbol{\pi}(\cdot | s_t) = \pi^1(\cdot | s_t) \times \ldots \times \pi^n(\cdot | s_t), \ \boldsymbol{\tau} = \{(s_0, \boldsymbol{a_0}), (s_1, \boldsymbol{a_1}), \ldots\}$

Trust-region Methods Recap

(Performance Difference Lemma) For any two policies $\pi, \bar{\pi}$, we have $\mathcal{J}(\bar{\pi}) - \mathcal{J}(\pi) = \mathcal{J}(\bar{\pi}) - \mathbb{E}_{s_0 \sim \mu} \left[V^{\pi}(s_0) \right]$ $= \mathcal{J}(\bar{\pi}) - \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left[V^{\pi}(s_0) \right]$ $= \mathcal{J}(\bar{\pi}) - \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left| \sum_{t=0}^{\infty} \gamma^t V^{\pi}(s_t) - \sum_{t=1}^{\infty} \gamma^t V^{\pi}(s_t) \right|$ $= \mathcal{J}(\bar{\pi}) - \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left| \sum_{t=0}^{\infty} \gamma^t V^{\pi}(s_t) - \sum_{t=0}^{\infty} \gamma^{t+1} V^{\pi}(s_{t+1}) \right|$ $= \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left| \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right| - \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left| \sum_{t=0}^{\infty} \gamma^t V^{\pi}(s_t) - \sum_{t=0}^{\infty} \gamma^{t+1} V^{\pi}(s_{t+1}) \right|$ $= \mathbb{E}_{\tau \sim (\mu, \bar{\pi})} \left[\gamma^t \left(r(s_t, a_t) + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t) \right) \right]$ $=\mathbb{E}_{\tau\sim(\mu,\bar{\pi})}\left[\gamma^{t}A^{\pi}(s_{t},a_{t})\right]$ $= \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\bar{\pi}},\bar{\pi})} \left[A^{\pi}(s_t,a_t) \right]$ The normalized state distribution $d^{\pi_{\theta}}(s) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^{t} P^{\pi_{\theta}}(s_{t} = s)$

 Performance Difference Lemma indicates that the return of a new policy (target policy) can be represented by the old policy, with the access to the new policy's occupancy measure (impractical) and the new policy itself (practical).

$$\pi$$
: Old Policy $\bar{\pi}$: New Policy

• To approximate the new policy's occupancy measure, we need π and $\bar{\pi}$ to be similar, e.g., small $D_{TV}^{max}(\pi \| \bar{\pi}) = \max_s D_{TV}(\pi(\cdot | s) \| \bar{\pi}(\cdot | s)))$

$$\mathbb{E}_{(s,a)\sim(d^{\pi},\bar{\pi})} \left[A^{\pi}(s_t, a_t) \right] \\ \mathbb{E}_{(s,a)\sim(d^{\pi},\bar{\pi})} \left[A^{\pi}(s_t, a_t) \right] = \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}(a_t|s_t)}{\pi(a_t|s_t)} A^{\pi}(s_t, a_t) \right]$$

• Surrogate Objective $\mathcal{L}_{\pi}(\bar{\pi}) = \mathcal{J}(\pi) + \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\bar{\pi})} \left[A^{\pi}(s_t, a_t) \right]$

• Why is PPO/TRPO effective?

(Monotonic Improvement Bound) Given $\alpha = D_{TV}^{max}(\pi \| \bar{\pi})$, $\epsilon = \max_{s,a} |A^{\pi}(s,a)|$, and $\mathcal{L}_{\pi}(\bar{\pi}) = \mathcal{J}(\pi) + \frac{1}{1-\gamma} \mathbb{E}_{(s,a) \sim (d^{\pi}, \bar{\pi})} [A^{\pi}(s_t, a_t)]$, we have:

$$\mathcal{J}(\bar{\pi}) \ge \mathcal{L}_{\pi}(\bar{\pi}) - \frac{4\epsilon}{1-\gamma}\alpha$$

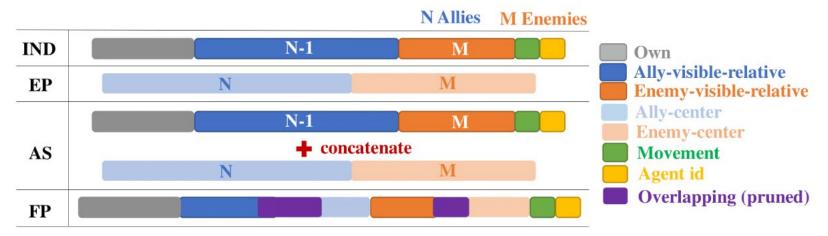
- The performance of the target policy can be monotonic improved by maximizing the righthand side, which is feasible.
- Maximization Objective of PPO

$$\mathbb{E}_{(s,a)\sim(d^{\pi},\pi)}\left[\min(\frac{\bar{\pi}}{\pi}A^{\pi}(s,a),\operatorname{clip}(\frac{\bar{\pi}}{\pi},1\pm\epsilon)A^{\pi}(s,a))\right]$$

A variant of Theorem 1 in Schulman, John, et al. "Trust region policy optimization." International conference on machine learning. PMLR, 2015.

Trust-region Methods in Cooperative MARL

- Multi-agent PPO (MAPPO)
 - State Construction



- Implementation Tricks
- Surrogate Objective

$$\mathcal{J}(\pi) + \frac{1}{n} \frac{1}{1-\gamma} \sum_{i=1}^{n} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\bar{\pi}^{i}}{\pi^{i}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

Yu, Chao, et al. "The surprising effectiveness of ppo in cooperative multi-agent games." Advances in Neural Information Processing Systems 35 (2022): 24611-24624.

- Coordinated PPO (CoPPO)
 - Surrogate Objective of MAPPO

$$\mathcal{J}(\pi) + \frac{1}{n} \frac{1}{1-\gamma} \sum_{i=1}^{n} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\bar{\pi}^{i}}{\pi^{i}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

 Local constraints on individual policies
 [?]
 A Controllable constraint on the joint action

Corollary 2 For all s, $D_{TV}(\boldsymbol{\pi}(\cdot|s) \| \bar{\boldsymbol{\pi}}(\cdot|s)) \leq \sum_{i=1}^{n} D_{TV}(\pi^{i}(\cdot|s) \| \bar{\pi}^{i}(\cdot|s)).$

• Directly restrict the joint policy difference

(Multi-agent Performance Difference Lemma) Given any joint policies π and $\bar{\pi}$, the difference between the performance of the two joint policies can be expressed as :

$$\mathcal{J}(\bar{\boldsymbol{\pi}}) - \mathcal{J}(\boldsymbol{\pi}) = \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\bar{\boldsymbol{\pi}}}, \bar{\boldsymbol{\pi}})} \left[A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

• Approximating $d^{\bar{\pi}}$ by d^{π} , similarly as in PPO, the surrogate objective of CoPPO:

$$\mathcal{J}(\boldsymbol{\pi}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\bar{\boldsymbol{\pi}}}{\boldsymbol{\pi}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right]$$

• Monotonic improvement of the joint policy

 $\left| \mathcal{J}(\bar{\boldsymbol{\pi}}) - \mathcal{J}(\boldsymbol{\pi}) - \frac{1}{1 - \gamma} \mathbb{E}_{(s, \boldsymbol{a}) \sim (d^{\boldsymbol{\pi}}, \bar{\boldsymbol{\pi}})} [A^{\boldsymbol{\pi}}] \right| \qquad \begin{array}{l} \text{Monotonic improvement} \\ \text{bound of MAPPO}^1 \end{array}$

$$\leq 4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right) < 4\epsilon \sum_{i=1}^{n} \frac{\alpha^{i}}{1-\gamma}$$

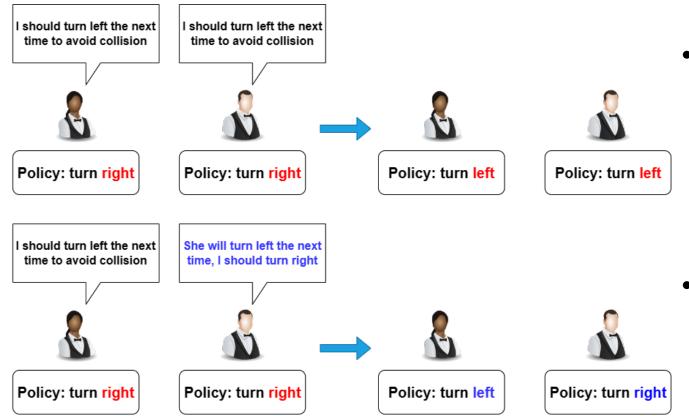
 Clip the joint action, where the outer clip limits the influence of other agents and reduce the variance

$$\max_{\pi^{i}} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\min\left(l(s,\boldsymbol{a})A^{\boldsymbol{\pi}}, \operatorname{clip}\left(l(s,\boldsymbol{a}), 1 \pm \epsilon^{\operatorname{inner}} \right)A^{\boldsymbol{\pi}} \right) \right]$$
$$l(s,\boldsymbol{a}) = \frac{\bar{\pi}^{i}(a^{i}|s)}{\pi^{i}(a^{i}|s)} \operatorname{clip}\left(\prod_{j \in -i} \frac{\bar{\pi}^{j}(a^{j}|s)}{\pi^{j}(a^{j}|s)}, 1 \pm \epsilon^{\operatorname{outer}} \right)$$

1. Proof without considering the parameter sharing technique.

Sequential Policy Optimization – From Nonstationarity

- MAPPO and CoPPO update the agents simultaneously, that is, all agents perform policy improvement at the same time and cannot observe the change of other agents.
- The simultaneous update scheme brings about the non-stationarity problem, i.e., the environment dynamic changes from one agent's perspective as other agents also change their policies.



- Sequential Update scheme: Agents sequentially perform policy update in a given order, the incoming agents are allowed to perceive changes made by preceding agents.
- Alleviate the problems brought by simultaneous update scheme.

• We formulate the update process in sequential policy update scheme as (assume agents are updated in the order 1, 2, ..., n):

$$\boldsymbol{\pi} = \hat{\boldsymbol{\pi}}^0 \xrightarrow[\text{Update } \pi^1]{} \hat{\boldsymbol{\pi}}^1 \xrightarrow[]{} \hat{\boldsymbol{\pi}}^1 \xrightarrow[]{} \hat{\boldsymbol{\pi}}^1 \xrightarrow[]{} \hat{\boldsymbol{\pi}}^{n-1} \xrightarrow[]{} \frac{\max_{\pi^n} \mathcal{L}_{\hat{\boldsymbol{\pi}}^{n-1}}(\hat{\boldsymbol{\pi}}^n)}{\text{Update } \pi^n} \xrightarrow[]{} \hat{\boldsymbol{\pi}}^n = \bar{\boldsymbol{\pi}}$$

where $\hat{\pi}^i = \bar{\pi}^1 \times \ldots \times \bar{\pi}^i \times \pi^{i+1} \times \ldots \times \pi^n$ is the joint policy while updating agent i, $\mathcal{L}_{\hat{\pi}^{i-1}}(\hat{\pi}^i)$ is the surrogate objective of agent i, and we denote the preceding agents of agent i as a set e^i .

• More on non-stationarity: an analysis on the state transition shift

(Non-stationarity Decomposition) Given the state transition shift $\Delta_{\pi^1,...,\pi^n}^{\bar{\pi}^{i-1},\pi^i,...,\pi^n}(s'|s) = \sum_{a} [\mathcal{T}(s'|s,a)(\hat{\pi}^{i-1}(a|s) - \pi(a|s))]$, the following decomposition holds:

$$\Delta_{\pi^1,\dots,\pi^n}^{\bar{\pi}^1,\dots,\bar{\pi}^{i-1},\pi^i,\dots,\pi^n} = \Delta_{\pi^1,\dots,\pi^n}^{\bar{\pi}^1,\pi^2,\dots,\pi^n} + \Delta_{\bar{\pi}^1,\pi^2,\dots,\pi^n}^{\bar{\pi}^1,\bar{\pi}^2,\pi^3,\dots,\pi^n} + \dots + \Delta_{\bar{\pi}^1,\dots,\bar{\pi}^{i-1},\pi^{i-1},\dots,\pi^n}^{\bar{\pi}^1,\dots,\bar{\pi}^{i-1},\pi^i,\dots,\pi^n}$$

- The total state transition shift encountered by agent *i* can be decomposed into the sum of state transition shift caused by each agent whose policy has been updated.
- Sequential update scheme presents a new perspective of tackling the nonstationarity problem.

Sequential Policy Optimization – to Monotonic Improvement

 Recap the multi-agent performance difference lemma, we derive a variant for sequential update:

$$\mathcal{J}(\hat{\boldsymbol{\pi}}^{i}) - \mathcal{J}(\hat{\boldsymbol{\pi}}^{i-1}) = \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\hat{\boldsymbol{\pi}}^{i}}, \hat{\boldsymbol{\pi}}^{i})} \left[A^{\hat{\boldsymbol{\pi}}^{i-1}}(s,\boldsymbol{a}) \right]$$

• Directly, an intuitive surrogate objective is obtained by approximating $d^{\hat{\pi}^i}$ using d^{π^i} and constraining the change between the joint policies:

$$\mathcal{L}^{I}_{\hat{\boldsymbol{\pi}}^{i-1}}\left(\hat{\boldsymbol{\pi}}^{i}\right) = \mathcal{J}(\boldsymbol{\pi}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\hat{\boldsymbol{\pi}}^{i}}{\boldsymbol{\pi}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a})\right]$$

• Can agent *i* achieve monotonic improvement? No!

$$\left|\mathcal{J}\left(\hat{\pi}^{i}\right) - \mathcal{L}_{\hat{\pi}^{i-1}}^{I}\left(\hat{\pi}^{i}\right)\right| \leq 2\epsilon\alpha^{i}\left(\frac{3}{1-\gamma} - \frac{2}{1-\gamma\left(1-\sum_{j\in\left(e^{i}\cup\left\{i\right\}\right)}\alpha^{j}\right)}\right) + \frac{2\epsilon\sum_{j\in e^{i}}\alpha^{j}}{1-\gamma}$$

- Implies that the target policy may not get improved even if α^i is well constrained, since the uncontrollable term could be too large.
- Why?
 - Review the policy iteration in sequential update scheme and performance difference lemma:

$$\hat{\pi}^{i-1} \xrightarrow{\max_{\pi^{i}} \mathcal{L}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i})}_{\text{Update } \pi^{i}} \hat{\pi}^{i} \quad \mathcal{J}(\hat{\pi}^{i}) - \mathcal{J}(\hat{\pi}^{i-1}) = \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\hat{\pi}^{i}},\pi)} \left[\frac{\hat{\pi}^{i}}{\pi} A^{\hat{\pi}^{i-1}}(s,\boldsymbol{a}) \right]$$
$$\mathcal{L}_{\hat{\pi}^{i-1}}^{I}(\hat{\pi}^{i}) = \mathcal{J}(\pi) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\pi},\pi)} \left[\frac{\hat{\pi}^{i}}{\pi} A^{\pi}(s,\boldsymbol{a}) \right]$$

 $\hat{\pi}^i$ should be evaluated by $A^{\hat{\pi}^{i-1}}$ instead of A^{π}

- How about Heterogeneous-agent PPO (HAPPO) ?
 - $\mathcal{L}^{I}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i})$ is equivalent to the surrogate objective of HAPPO.

Multi-agent state-action value function:

$$Q_{\boldsymbol{\pi}}^{i_{1:m}}(s, \boldsymbol{a}^{i_{1:m}}) \triangleq \mathbb{E}_{\mathbf{a}^{-i_{1:m}} \sim \boldsymbol{\pi}^{-i_{1:m}}} \left[Q_{\boldsymbol{\pi}}(s, \boldsymbol{a}^{i_{1:m}}, \mathbf{a}^{-i_{1:m}}) \right]$$

- $i_{1:m}$ denotes an ordered subset $\{i_1, \ldots, i_m\}$ of \mathcal{N} , and $-i_{1:m}$ refers to its complement.
- i_k refers to the k^{th} agent in the ordered subset.

Multi-agent advantage function:

$$A_{\pi}^{i_{1:m}}(s, \boldsymbol{a}^{j_{1:k}}, \boldsymbol{a}^{i_{1:m}}) \triangleq Q_{\pi}^{j_{1:k}, i_{1:m}}(s, \boldsymbol{a}^{j_{1:k}}, \boldsymbol{a}^{i_{1:m}}) - Q_{\pi}^{j_{1:k}}(s, \boldsymbol{a}^{j_{1:k}})$$

• $j_{1:k}$ and $i_{1:m}$ are disjoint sets.

^{1.} Kuba, Jakub Grudzien, et al. "Trust region policy optimisation in multi-agent reinforcement learning." ICLR. 2022. 2. Yaodong Yang's talk. https://www.techbeat.net/talk-info?id=715.

Lemma 1 (Multi-Agent Advantage Decomposition). In any cooperative Markov games, given a joint policy π , for any state s, and any agent subset $i_{1:m}$, the below equations holds.

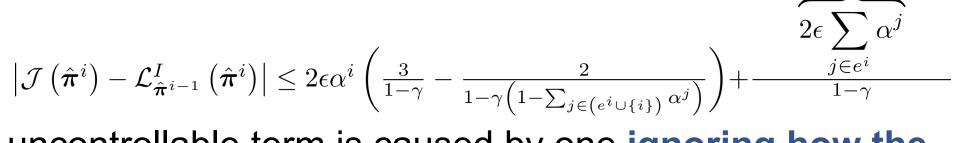
$$A_{\pi}^{i_{1:m}}(s, a^{i_{1:m}}) = \sum_{j=1}^{m} A_{\pi}^{i_{j}}(s, a^{i_{1:j-1}}, a^{i_{j}}).$$

• We can re-derive the HAPPO surrogate objectives:

$$\frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\hat{\pi}^{\mathcal{N}}}{\pi^{\mathcal{N}}} A^{\pi^{\mathcal{N}}}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}}{\pi} A^{\pi^{i_{1:n}}}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{1:j}}}{\pi} A^{i_{j}}(s,a^{i_{1:j-1}},a^{i_{j}}) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j-1}}}}{\pi} A^{\pi}(s,a) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j}}}}{\pi} A^{i_{j}}(s,a^{i_{j-1}},a^{i_{j}}) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j}}}}{\pi} A^{i_{j}}(s,a^{i_{j-1}},a^{i_{j}}) \right] = \frac{1}{1-\gamma} \mathbb{E}_{(s,a)\sim(d^{\pi},\pi)} \left[\frac{\bar{\pi}^{i_{j}} - \hat{\pi}^{i_{j}}}}{\pi} A^{i_{j}}(s,a^{i_{j-1}},a^{i_{j}}) \right]$$

- $\hat{\pi}^{i_{j-1}}$ is a constant while updating agent i_j
- The surrogate objective of agent i_j becomes $\frac{1}{1-\gamma}\mathbb{E}_{(s,a)\sim(d^{\pi},\pi)}\left|\frac{\hat{\pi}^{i_j}}{\pi}A^{\pi}(s,a)\right|$
- Given the order $1, \ldots, n$, we recover $\frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a})\sim (d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\frac{\hat{\pi}^{j}}{\boldsymbol{\pi}} A^{\boldsymbol{\pi}}(s,\boldsymbol{a}) \right] = \mathcal{L}_{\hat{\pi}^{j-1}}^{I} \left(\hat{\pi}^{j} \right)$
- HAPPO also fails in guarantee the monotonic improvement of a single agent.

Uncontrillable by agent i



- The uncontrollable term is caused by one ignoring how the updating of its preceding agents' policies influences its advantage function. We investigate reducing the uncontrollable term in policy evaluation.
- Preceding-agent Off-policy Correction (PreOPC):

$$A^{\pi,\hat{\pi}^{i-1}}(s_t, a_t) = \delta_t + \sum_{k \ge 1} \gamma^k \big(\prod_{j=1}^k \lambda \min \big(1.0, \frac{\hat{\pi}^{i-1}(a_{t+j}|s_{t+j})}{\pi(a_{t+j}|s_{t+j})} \big) \big) \delta_{t+k}$$

$$\delta_t = r(s_t, a_t) + \gamma V(s_{t+1}) - V(s_t)$$

• We also prove that $A^{\pi, \hat{\pi}^{i-1}}$ converges to $A^{\hat{\pi}^{i-1}}$ with probability 1 as the agent *i* update its value function.

- Retain Monotonic Improvement Bound
 - With PreOPC, the surrogate objective of agent *i* becomes:

$$\mathcal{L}_{\hat{\boldsymbol{\pi}}^{i-1}}(\hat{\boldsymbol{\pi}}^{i}) = \mathcal{J}(\hat{\boldsymbol{\pi}}^{i-1}) + \frac{1}{1-\gamma} \mathbb{E}_{(s,\boldsymbol{a}) \sim (d^{\boldsymbol{\pi}}, \hat{\boldsymbol{\pi}}^{i})} [A^{\boldsymbol{\pi}, \hat{\boldsymbol{\pi}}^{i-1}}(s, \boldsymbol{a})]$$

(Single Agent Monotonic Bound) For agent *i*, we have:

$$\begin{split} \left| \mathcal{J}(\hat{\pi}^{i}) - \mathcal{L}_{\hat{\pi}^{i-1}}(\hat{\pi}^{i}) \right| &\leq 4\epsilon^{i} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j \in (e^{i} \cup \{i\})} \alpha^{j})} \right) + \frac{\xi^{i}}{1-\gamma} ,\\ \text{where } \xi^{i} &= \max_{s, \boldsymbol{a}} |A^{\boldsymbol{\pi}, \hat{\boldsymbol{\pi}}^{i-1}}(s, \boldsymbol{a}) - A^{\hat{\boldsymbol{\pi}}^{i-1}}(s, \boldsymbol{a})| \text{ converges to } 0 \text{ with probability } 1 \text{ as the agent } i \text{ updates its value function.} \end{split}$$

• We retain the monotonic improvement guarantee of a single agent!

(Multi Agent Monotonic Bound) For agent
$$i \in \mathcal{N}$$
, we have:
 $|\mathcal{J}(\bar{\pi}) - \mathcal{G}_{\pi}(\bar{\pi})| \leq 4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j\in(e^{i}\cup\{i\})}\alpha^{j})}\right) + \frac{\sum_{i=1}^{n}\xi^{i}}{1-\gamma}$

Algorithm	Update	Monotonic Bound
MAPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \frac{\alpha^{i}}{1-\gamma}$
CoPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right)$
HAPPO	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right)$
		Single Agent: No Guarantee
A2PO (ours)	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j \in (e^{i} \cup \{i\})} \alpha^{j})} \right) + \frac{\sum_{i=1}^{n} \xi^{i}}{1-\gamma}$
		Single Agent: $4\epsilon^i \alpha^i (\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j \in (e^i \cup \{i\})} \alpha^j)}) + \frac{\xi^i}{1-\gamma}$

Algorithm	Update	Monotonic Bound
MAPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \frac{\alpha^{i}}{1-\gamma}$
CoPPO	Simultaneous	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})} \right)$
НАРРО	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j=1}^{n} \alpha^{j})}\right)$ Single Agent: No Guarantee
A2PO $(ours)$	Sequential	$4\epsilon \sum_{i=1}^{n} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j\in(e^{i}\cup\{i\})}\alpha^{j})}\right) + \frac{\sum_{i=1}^{n}\xi^{i}}{1-\gamma}$ Single Agent: $4\epsilon^{i} \alpha^{i} \left(\frac{1}{1-\gamma} - \frac{1}{1-\gamma(1-\sum_{j\in(e^{i}\cup\{i\})}\alpha^{j})}\right) + \frac{\xi^{i}}{1-\gamma}$
		1 1

• Given that $-\frac{1}{1 - \gamma(1 - \sum_{j \in (e^i \cup \{i\})} \alpha^j)} < -\frac{1}{1 - \gamma(1 - \sum_{j=1}^n \alpha^j)}$

 Considering that ∀i ∈ N, ξⁱ converges to 0, we get tighter monotonic improvement bound compared to previous trust region methods in multiagent scenarios. A tighter bound improves target expected performance by optimizing the surrogate objective more effectively.

Agent-by-agent Policy Optimization

• The practical objective of updating agent i becomes:

$$\mathcal{L}_{\hat{\boldsymbol{\pi}}^{\hat{\imath}-1}}(\hat{\boldsymbol{\pi}}^{i}) = \mathbb{E}_{(s,\boldsymbol{a})\sim(d^{\boldsymbol{\pi}},\boldsymbol{\pi})} \left[\min\left(l(s,\boldsymbol{a})A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}}, \operatorname{clip}\left(l(s,\boldsymbol{a}), 1\pm\epsilon^{i} \right)A^{\boldsymbol{\pi},\hat{\boldsymbol{\pi}}^{i-1}} \right) \right]$$

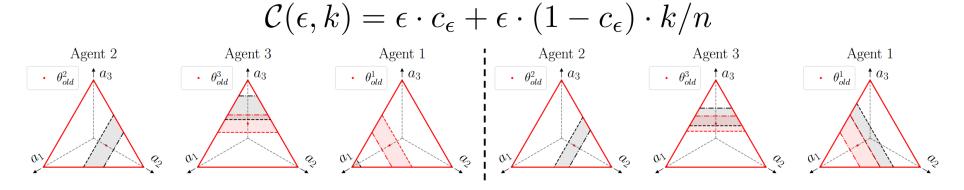
where $l(s, \boldsymbol{a}) = \frac{\bar{\pi}^{i}(a^{i}|s)}{\pi^{i}(a^{i}|s)}g(s, \boldsymbol{a})$, and $g(s, \boldsymbol{a}) = \operatorname{clip}(\prod_{j \in e^{i}} \frac{\bar{\pi}^{j}(a^{j}|s)}{\pi^{j}(a^{j}|s)}, 1 \pm \frac{\epsilon^{i}}{2})$

- We have obtained a surrogate objective with theoretical strengths.
- How to maximize such objective more effectively?
 - 1. Formulated as maximization with coordinate ascent \rightarrow the agents updating order matters.
 - 2. Further reduce the influence of the non-stationarity problem.

- Semi-greedy Agent Selection Rule
 - Select the agent to update in order k by: $\begin{cases}
 \mathcal{R}(k) = \arg \max_{i \in (\mathcal{N}-e)} \mathbb{E}_{s,a^i}[|A^{\pi,\hat{\pi}^{\mathcal{R}(k-1)}}|], & k\%2 = 0 \\
 \mathcal{R}(k) \sim \mathcal{U}(\mathcal{N}-e), & k\%2 = 1
 \end{cases}, \text{ where } e = \{\mathcal{R}(1), \dots, \mathcal{R}(k-1)\}$
- Adaptive Clipping Parameter
 - From *Non-stationarity Decomposition*, agents with higher priorities contribute more to the non-stationarity problem.

$$\Delta_{\pi^1,\dots,\pi^n}^{\bar{\pi}^1,\dots,\bar{\pi}^{i-1},\pi^i,\dots,\pi^n} = \Delta_{\pi^1,\dots,\pi^n}^{\bar{\pi}^1,\pi^2,\dots,\pi^n} + \Delta_{\bar{\pi}^1,\pi^2,\dots,\pi^n}^{\bar{\pi}^1,\bar{\pi}^2,\pi^3,\dots,\pi^n} + \dots + \Delta_{\bar{\pi}^1,\dots,\bar{\pi}^{i-1},\pi^{i-1},\dots,\pi^n}^{\bar{\pi}^1,\dots,\bar{\pi}^{i-1},\pi^i,\dots,\pi^n}$$

• Adjust the clipping parameters according to the agent order, leading to more balanced and sufficient clipping ranges.



Experiments

- StarCraftll Multi-agent Challenge (SMAC)
- Multi-agent MuJoCo (MA-MuJoCo)
- Google Research Football Full-game Scenarios
- Training Duration

StarCraftll Multi-agent Challenge (SMAC)

Table 5: Median win rates and standard deviations on SMAC tasks. 'w/ PS' means the algorithm is implemented as parameter sharing

Map	Difficulty	MAPPO w/ PS	CoPPO w/ PS	HAPPO w/ PS	A2PO w/ PS	Qmix w/ PS
MMM	Easy	96.9(0.988)	96.9(1.25)	95.3(2.48)	100(1.07)	95.3(2.5)
3s_vs_5z	Hard	100(1.17)	100(2.08)	100(0.659)	100(0.534)	98.4(2.4)
2c_vs_64zg	Hard	98.4 (1.74)	96.9(0.521)	96.9(0.521)	96.9(0.659)	92.2(4.0)
3s5z	Hard	84.4(4.39)	92.2(2.35)	92.2(1.74)	98.4(1.04)	88.3(2.9)
5m_vs_6m	Hard	84.4(2.77)	84.4(2.12)	87.5(2.51)	90.6(3.06)	75.8(3.7)
8m_vs_9m	Hard	84.4(2.39)	84.4(2.04)	96.9(3.78)	100(1.04)	92.2(2.0)
10m_vs_11m	Hard	93.8(18.7)	96.9(2.6)	98.4(2.99)	100(0.521)	95.3(1.0)
6h_vs_8z	Super Hard	87.5(1.53)	90.6(0.765)	87.5(1.49)	90.6(1.32)	9.4(2.0)
3s5z_vs_3s6z	Super Hard	82.8(19.2)	84.4(2.9)	37.5(13.2)	93.8(19.8)	82.8(5.3)
MMM2	Super Hard	90.6(8.89)	90.6(6.93)	51.6(9.01)	98.4(1.25)	87.5(2.6)
27m_vs_30m	Super Hard	93.8(3.75)	93.8(2.2)	90.6(4.77)	100(1.55)	39.1(9.8)
corridor	Super Hard	96.9(0)	100(0.659)	96.9(0.96)	100(0)	84.4(2.5)
overall	/	91.1(5.46)	92.6(2.2)	85.9(3.68)	97.4(2.65)	78.4(3.6)

Multi-agent MuJoCo (MA-MuJoCo)

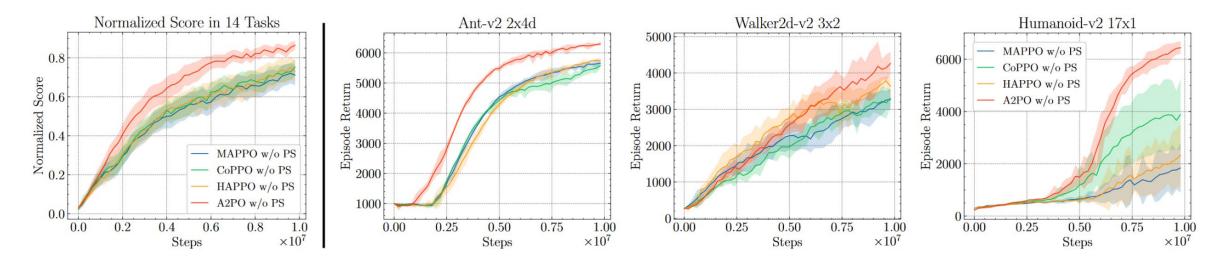


Figure 3: Experiments in MA-MuJoCo. Left: Normalized scores on all the 14 tasks. Right: Comparisons of averaged return on selected tasks. The number of robot joints increases from left to right.

Google Research Football Full-game Scenarios

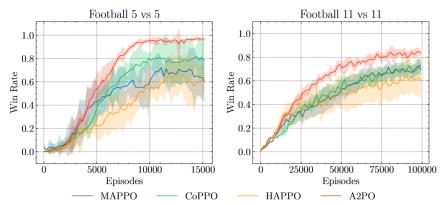
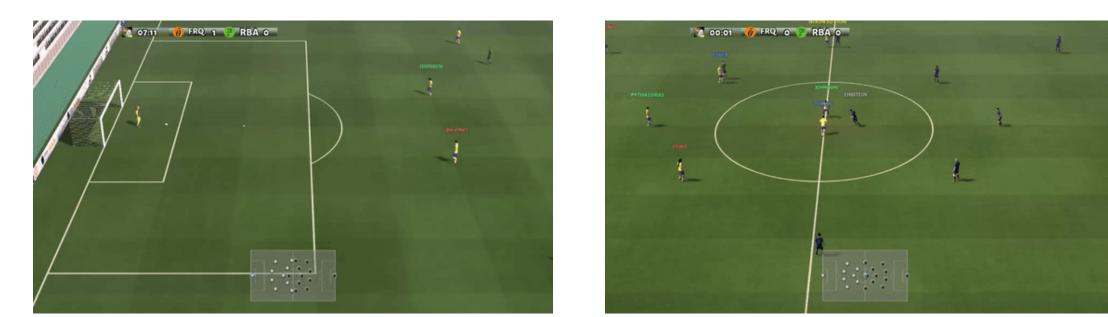
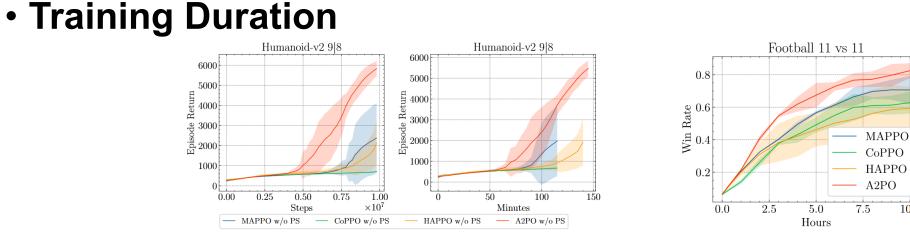


Figure 4: Averaged win rate on the Google Research Football full-game scenarios. Table 3: Learned behaviors on the Google Research Football 5-vs-5 scenario. Bigger values are better except fot the 'Lost' metric.

Metric	MAPPO	CoPPO	HAPPO	A2PO
Assist	0.04(0.02)	0.19(0.08)	0.07(0.05)	0.56(0.20)
Goal	1.95(1.17)	4.42(2.08)	2.68(0.86)	9.01(0.95)
Lost	0.49(0.11)	0.74(0.33)	1.04(0.12)	0.78(0.15)
Pass	1.52(0.13)	3.44(1.04)	4.03(1.97)	6.42(2.23)
Pass Rate	19.3(10.0)	35.0(10.3)	48.9(25.7)	67.1 (11.7)





(a) Comparison on Humanoid 9/8 over both environment steps and training time.

(b) Comparison on GRF 11-vs-11 scenario.

10.0

Table 6: The comparison of training duration. The format of the first line in a cell is: Training time(Sampling time+Updating Time). The second line of a cell represents the time normalized.

Task	MAPPO	CoPPO	HAPPO	A2PO
3s5z	3h29m(3h3m+0h26m)	3h33m(3h6m+0h27m)	3h49m(3h7m+0h42m)	4h32m(3h41m+0h51m)
	1.00(0.87 + 0.13)	1.02(0.89 + 0.13)	1.10(0.89 + 0.20)	1.30(1.06 + 0.25)
27m vs 30m	13h23m(8h31m + 4h52m)	13h19m(8h24m + 4h55m)	16h2m(8h20m + 7h42m)	15h53m(8h7m + 7h46m)
	1.00(0.64 + 0.36)	1.00(0.63 + 0.37)	1.20(0.62 + 0.58)	1.19(0.61 + 0.58)
Humanoid 9 8	2h0m(1h45m + 0h15m)	1h58m(1h43m + 0h15m)	2h15m(1h45m + 0h30m)	2h31m(2h0m + 0h31m)
	1.00(0.87 + 0.13)	0.99(0.86 + 0.13)	1.12(0.87 + 0.25)	1.26(1.00 + 0.26)
Ant 4x2	6h42m(6h16m + 0h26m)	6h45m(6h19m + 0h26m)	7h29m(6h5m + 1h24m)	7h2m(5h34m + 1h28m)
	1.00(0.93 + 0.07)	1.01(0.94 + 0.07)	1.12(0.91 + 0.21)	1.05(0.83 + 0.22)
Humanoid 17x1	12h9m(10h6m + 2h3m)	17h7m(15h5m + 2h2m)	16h55m(11h2m + 5h53m)	19h25m(11h59m + 7h26m)
	1.00(0.83 + 0.17)	1.41(1.24 + 0.17)	1.39(0.91 + 0.48)	1.60(0.99 + 0.61)
Football 5vs5	34h46m(32h47m + 1h59m)	32h46m(30h49m + 1h57m)	39h26m(31h54m + 7h32m)	37h26m(30h2m + 7h24m)
	1.00(0.94 + 0.06)	0.94(0.89 + 0.06)	1.13(0.92 + 0.22)	1.08(0.86 + 0.21)

Summary

- 1. Brief introduction of Cooperative MARL
- 2. Serial Progress:
 - MAPPO: PPO in CTDE scheme
 - CoPPO: Coordinate the agents via the joint policy
 - HAPPO: Advantage function decomposition
- 3. How to Retain Monotonic Improvement Guarantee in Sequential Policy Optimization and Tighten the Monotonic Improvement Bound
- 4. A Practical Algorithm: Agent-by-agent Policy Optimization
- 5. More Efficient Surrogate Objective Maximization